en
Yuxi Liu,Saransh Mehta

Hands-On Deep Learning Architectures with Python

Сообщить о появлении
Загрузите файл EPUB или FB2 на Букмейт — и начинайте читать книгу бесплатно. Как загрузить книгу?
Concepts, tools, and techniques to explore deep learning architectures and methodologies

Key Features:

Explore advanced deep learning architectures using various datasets and frameworksImplement deep architectures for neural network models such as CNN, RNN, GAN, and many moreDiscover design patterns and different challenges for various deep learning architectures

Book Description:

Deep learning architectures are composed of multilevel nonlinear operations that represent high-level abstractions; this allows you to learn useful feature representations from the data. This book will help you learn and implement deep learning architectures to resolve various deep learning research problems.

Hands-On Deep Learning Architectures with Python explains the essential learning algorithms used for deep and shallow architectures. Packed with practical implementations and ideas to help you build efficient artificial intelligence systems (AI), this book will help you learn how neural networks play a major role in building deep architectures. You will understand various deep learning architectures (such as AlexNet, VGG Net, GoogleNet) with easy-to-follow code and diagrams. In addition to this, the book will also guide you in building and training various deep architectures such as the Boltzmann mechanism, autoencoders, convolutional neural networks (CNNs), recurrent neural networks (RNNs), natural language processing (NLP), GAN, and more—all with practical implementations.

By the end of this book, you will be able to construct deep models using popular frameworks and datasets with the required design patterns for each architecture. You will be ready to explore the potential of deep architectures in today's world.

What you will learn:

Implement CNNs, RNNs, and other commonly used architectures with PythonExplore architectures such as VGGNet, AlexNet, and GoogLeNetBuild deep learning architectures for AI applications such as face and image recognition, fraud detection, and many moreUnderstand the architectures and applications of Boltzmann machines and autoencoders with concrete examples Master artificial intelligence and neural network concepts and apply them to your architectureUnderstand deep learning architectures for mobile and embedded systems

Who this book is for:

If you’re a data scientist, machine learning developer/engineer, or deep learning practitioner, or are curious about AI and want to upgrade your knowledge of various deep learning architectures, this book will appeal to you. You are expected to have some knowledge of statistics and machine learning algorithms to get the best out of this book

Yuxi (Hayden) Liu is an author of a series of machine learning books and an education enthusiast. His first book, the first edition of Python Machine Learning By Example, was a #1 bestseller on Amazon India in 2017 and 2018 and his other book R Deep Learning Projects, both published by Packt Publishing. He is an experienced data scientist who is focused on developing machine learning and deep learning models and systems. He has worked in a variety of data-driven domains and has applied his machine learning expertise to computational advertising, recommendations, and network anomaly detection. He published five first-authored IEEE transaction and conference papers during his master's research at the University of Toronto. Saransh Mehta has cross-domain experience of working with texts, images, and audio using deep learning. He has been building artificial, intelligence-based solutions, including a generative chatbot, an attendee-matching recommendation system, and audio keyword recognition systems for multiple start-ups. He is very familiar with the Python language, and has extensive knowledge of deep learning libraries such as TensorFlow and Keras. He has been in the top 10% of entrants to deep learning challenges hosted by Microsoft and Kaggle.
Эта книга сейчас недоступна
550 бумажных страниц
Дата публикации оригинала
2019
Год выхода издания
2019
Издательство
Packt Publishing
Уже прочитали? Что скажете?
👍👎
fb2epub
Перетащите файлы сюда, не более 5 за один раз