bookmate game
Саймон Сингх

Великая Теорема Ферма

Сообщить о появлении
Загрузите файл EPUB или FB2 на Букмейт — и начинайте читать книгу бесплатно. Как загрузить книгу?
  • Pavel Myagkovцитирует3 года назад
    Так, перу Франческо Альгаротти принадлежал учебник «Философия сэра Исаака Ньютона, объясненная для пользы дам».
  • Pavel Myagkovцитирует3 года назад
    Софи Жермен революционизировала поиски Доказательства Великой теоремы Ферма и внесла вклад, значительно превосходящий все, что сделали ее предшественники-мужчины.
  • Pavel Myagkovцитирует3 года назад
    Исключением из общего правила стала великая женщина-математик из России Софья Васильевна Ковалевская. Она вступила в фиктивный брак с палеонтологом Владимиром Онуфриевичем Ковалевским
  • Pavel Myagkovцитирует3 года назад
    Мария Аньези родилась в Милане в 1718 году.
  • Pavel Myagkovцитирует3 года назад
    Математика и процесс логического доказательства целиком захватили ее, и на вопрос, почему она не выходит замуж, Ипатия отвечала, что обручена с Истиной
  • Pavel Myagkovцитирует3 года назад
    Первой женщиной, оставившей след в истории математики, была Теано (VI век до н. э.), учившаяся у Пифагора, ставшая одним из его самых близких последователей и вышедшая за него замуж.
  • Pavel Myagkovцитирует3 года назад
    Вопрос, который не давал биологам покоя, — почему жизненный цикл у цикад такой длинный? Имеет ли какое-нибудь значение для жизненного цикла то, что продолжительность его выражается простым числом лет? Другой вид — Magicicada tredecim — роится через каждые 13 лет. Это наводит на мысль, что продолжительность жизненного цикла, выражающаяся простым числом лет, дает виду определенные эволюционные преимущества
  • Pavel Myagkovцитирует3 года назад
    Теория простых чисел — одна из немногих областей чистой математики, которые нашли непосредственное приложение в реальном мире, а именно в криптографии.
  • Pavel Myagkovцитирует3 года назад
    Например, любая попытка найти в пару каждому рациональному числу иррациональное число так, чтобы ни одно иррациональное число не осталось без своей рациональной пары, непременно заканчивается неудачей. И действительно, можно доказать, что бесконечное множество иррациональных чисел больше бесконечного множества рациональных чисел.
  • Pavel Myagkovцитирует3 года назад
    Георг Кантор, работавший над проблемой бесконечности наряду с Гильбертом, определил бесконечность как длину нескончаемого перечня натуральных чисел (1,2,3,4…). По Кантору, все, что по величине сравнимо с длиной перечня натуральных чисел, также бесконечно.
    Следуя этому определению, нам придется признать, что множество четных натуральных чисел, которое интуитивно кажется меньше, чем множество всех натуральных чисел, также бесконечно. Нетрудно доказать, что всех натуральных чисел столько же, сколько четных натуральных чисел, поскольку каждому натуральному числу можно подобрать пару — соответствующее четное число:
fb2epub
Перетащите файлы сюда, не более 5 за один раз