This volume by a prominent authority on permutation groups consists of lecture notes that provide a self-contained account of distinct classification theorems. A ready source of frequently quoted but usually inaccessible theorems, it is ideally suited for professional group theorists as well as students with a solid background in modern algebra.The three-part treatment begins with an introductory chapter and advances to an economical development of the tools of basic group theory, including group extensions, transfer theorems, and group representations and characters. The final chapter features thorough discussions of the work of Zassenhaus on Frobenius elements and sharply transitive groups in addition to an exploration of Huppert's findings on solvable doubly transitive groups.