en
Ankit Jain,Amita Kapoor,Armando Fandango

TensorFlow Machine Learning Projects

Сообщить о появлении
Загрузите файл EPUB или FB2 на Букмейт — и начинайте читать книгу бесплатно. Как загрузить книгу?
Implement TensorFlow's offerings such as TensorBoard, TensorFlow.js, TensorFlow Probability, and TensorFlow Lite to build smart automation projects
Key FeaturesUse machine learning and deep learning principles to build real-world projectsGet to grips with TensorFlow's impressive range of module offeringsImplement projects on GANs, reinforcement learning, and capsule networkBook DescriptionTensorFlow has transformed the way machine learning is perceived. TensorFlow Machine Learning Projects teaches you how to exploit the benefits—simplicity, efficiency, and flexibility—of using TensorFlow in various real-world projects. With the help of this book, you’ll not only learn how to build advanced projects using different datasets but also be able to tackle common challenges using a range of libraries from the TensorFlow ecosystem.
To start with, you’ll get to grips with using TensorFlow for machine learning projects; you’ll explore a wide range of projects using TensorForest and TensorBoard for detecting exoplanets, TensorFlow.js for sentiment analysis, and TensorFlow Lite for digit classification.
As you make your way through the book, you’ll build projects in various real-world domains, incorporating natural language processing (NLP), the Gaussian process, autoencoders, recommender systems, and Bayesian neural networks, along with trending areas such as Generative Adversarial Networks (GANs), capsule networks, and reinforcement learning. You’ll learn how to use the TensorFlow on Spark API and GPU-accelerated computing with TensorFlow to detect objects, followed by how to train and develop a recurrent neural network (RNN) model to generate book scripts.
By the end of this book, you’ll have gained the required expertise to build full-fledged machine learning projects at work.
What you will learnUnderstand the TensorFlow ecosystem using various datasets and techniquesCreate recommendation systems for quality product recommendationsBuild projects using CNNs, NLP, and Bayesian neural networksPlay Pac-Man using deep reinforcement learningDeploy scalable TensorFlow-based machine learning systemsGenerate your own book script using RNNsWho this book is forTensorFlow Machine Learning Projects is for you if you are a data analyst, data scientist, machine learning professional, or deep learning enthusiast with basic knowledge of TensorFlow. This book is also for you if you want to build end-to-end projects in the machine learning domain using supervised, unsupervised, and reinforcement learning techniques
Ankit Jain currently works as a senior research scientist at Uber AI Labs, the machine learning research arm of Uber. His work primarily involves the application of deep learning methods to a variety of Uber's problems, ranging from forecasting and food delivery to self-driving cars. Previously, he has worked in a variety of data science roles at the Bank of America, Facebook, and other start-ups. He has been a featured speaker at many of the top AI conferences and universities, including UC Berkeley, O'Reilly AI conference, and others. He has a keen interest in teaching and has mentored over 500 students in AI through various start-ups and bootcamps. He completed his MS at UC Berkeley and his BS at IIT Bombay (India). Armando Fandango creates AI empowered products by leveraging his expertise in deep learning, machine learning, distributed computing, and computational methods and has provided thought leadership roles as Chief Data Scientist and Director at startups and large enterprises. He has been advising high-tech AI-based startups. Armando has authored books titled Python Data Analysis — Second Edition and Mastering TensorFlow. He has also published research in international journals and conferences. Amita Kapoor is an Associate Professor at the Department of Electronics, SRCASW, University of Delhi. She has been teaching neural networks for twenty years. During her PhD, she was awarded the prestigious DAAD fellowship, which enabled her to pursue part of her research work at the Karlsruhe Institute of Technology, Germany. She was awarded the Best Presentation Award at the International Conference on Photonics 2008. Being a member of the ACM, IEEE, INNS, and ISBS, she has published more than 40 papers in international journals and conferences. Her research areas include machine learning, AI, neural networks, robotics, and Buddhism and ethics in AI. She has co-authored the book, Tensorflow 1.x Deep Learning Cookbook, by Packt Publishing.
Эта книга сейчас недоступна
520 бумажных страниц
Дата публикации оригинала
2018
Год выхода издания
2018
Издательство
Packt Publishing
Уже прочитали? Что скажете?
👍👎
fb2epub
Перетащите файлы сюда, не более 5 за один раз